These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microstructural Engineering and Architectural Design of Metal-Organic Framework Membranes.
    Author: Liu Y, Ban Y, Yang W.
    Journal: Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628252.
    Abstract:
    In the past decade, a huge development in rational design, synthesis, and application of molecular sieve membranes, which typically included zeolites, metal-organic frameworks (MOFs), and graphene oxides, has been witnessed. Owing to high flexibility in both pore apertures and functionality, MOFs in the form of membranes have offered unprecedented opportunities for energy-efficient gas separations. Reports on the fabrication of well-intergrown MOF membranes first appeared in 2009. Since then there has been tremendous growth in this area along with an exponential increase of MOF-membrane-related publications. In order to compete with other separation and purification technologies, like cryogenic distillation, pressure swing adsorption, and chemical absorption, separation performance (including permeability, selectivity, and long-term stability) of molecular sieve membranes must be further improved in an attempt to reach an economically attractive region. Therefore, microstructural engineering and architectural design of MOF membranes at mesoscopic and microscopic levels become indispensable. This review summarizes some intriguing research that may potentially contribute to large-scale applications of MOF membranes in the future.
    [Abstract] [Full Text] [Related] [New Search]