These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photoaffinity labeling of the tight ADP binding site of the chloroplast coupling factor one (CF1): the effect on the CF1-ATPase activity. Author: Czarnecki JJ, Dunham KR, Selman BR. Journal: Biochim Biophys Acta; 1985 Aug 28; 809(1):51-6. PubMed ID: 2862914. Abstract: Chloroplast thylakoid membranes contain tightly bound ADP which is intimately involved in the mechanism of photophosphorylation. The photoaffinity analog 2-azido-ADP binds tightly to spinach thylakoid membrane-bound coupling factor one (CF1) and, in a manner similar to ADP, inhibits the light-triggered ATPase activity (Czarnecki, J.J., Abbott, M.S. and Selman, B.R. (1983) Eur. J. Biochem. 136, 19-24). Ultraviolet irradiation of thylakoid membranes containing noncovalently, tightly bound 2-azido[beta-32P]ADP results in the inactivation of both the methanol-stimulated MgATPase activity of the membrane-bound CF1 and the octylglucoside-dependent MgATPase activity of the solubilized enzyme. There is a linear correlation between the loss of enzyme activity and the covalent incorporation of the photoaffinity analog. Full inactivation of catalytic activity is estimated to occur upon incorporation of 1.07 mol analog and 0.65 mol analog per mol enzyme for the methanol- and octylglucoside-stimulated activities, respectively. Since 2-azido-ADP modifies only the beta subunit of the CF1 and since there are probably three beta subunits per CF1, these results indicate strong cooperativity among beta subunits and between the site of tightly bound nucleotides and the catalytic sites.[Abstract] [Full Text] [Related] [New Search]