These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular aspects of the biophysical CO2-concentrating mechanism and its regulation in marine diatoms. Author: Tsuji Y, Nakajima K, Matsuda Y. Journal: J Exp Bot; 2017 Jun 01; 68(14):3763-3772. PubMed ID: 28633304. Abstract: Diatoms operate a CO2-concentrating mechanism (CCM) that drives upwards of 20% of annual global primary production. Recent progress in CCM research in the marine pennate diatom Phaeodactylum tricornutum revealed that this diatom directly takes up HCO3- from seawater through low-CO2-inducible plasma membrane HCO3- transporters, which belong to the solute carrier (SLC) 4 family. Apart from this, studies of carbonic anhydrases (CAs) in diatoms have revealed considerable diversity in classes and localization among species. This strongly suggests that the CA systems, which control permeability and flux of dissolved inorganic carbon (DIC) by catalysing reversible CO2 hydration, have evolved from diverse origins. Of particular interest is the occurrence of low-CO2-inducible external CAs in the centric marine diatom Thalassiosira pseudonana, offering a strategy of CA-catalysed initial CO2 entry via passive diffusion, contrasting with active DIC transport in P. tricornutum. Molecular mechanisms to transport DIC across chloroplast envelopes are likely also through specific HCO3- transporters, although details have yet to be elucidated. Furthermore, recent discovery of a luminal θ-CA in the diatom thylakoid implied a common strategy in the mechanism to supply CO2 to RubisCO in the pyrenoid, which is conserved among green algae and some heterokontophytes. These results strongly suggest an occurrence of convergent coevolution between the pyrenoid and thylakoid membrane in aquatic photosynthesis.[Abstract] [Full Text] [Related] [New Search]