These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbon-Coated Li3 VO4 Spheres as Constituents of an Advanced Anode Material for High-Rate Long-Life Lithium-Ion Batteries.
    Author: Shen L, Chen S, Maier J, Yu Y.
    Journal: Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28640524.
    Abstract:
    Lithium-ion batteries are receiving considerable attention for large-scale energy-storage systems. However, to date the current cathode/anode system cannot satisfy safety, cost, and performance requirements for such applications. Here, a lithium-ion full battery based on the combination of a Li3 VO4 anode with a LiNi0.5 Mn1.5 O4 cathode is reported, which displays a better performance than existing systems. Carbon-coated Li3 VO4 spheres comprising nanoscale carbon-coating primary particles are synthesized by a morphology-inheritance route. The observed high capacity combined with excellent sample stability and high rate capability of carbon-coated Li3 VO4 spheres is superior to other insertion anode materials. A high-performance full lithium-ion battery is fabricated by using the carbon-coated Li3 VO4 spheres as the anode and LiNi0.5 Mn1.5 O4 spheres as the cathode; such a cell shows an estimated practical energy density of 205 W h kg-1 with greatly improved properties such as pronounced long-term cyclability, and rapid charge and discharge.
    [Abstract] [Full Text] [Related] [New Search]