These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro evaluation of surface properties of Pro Seal® and Opal® SealTM in preventing white spot lesions.
    Author: Premaraj TS, Rohani N, Covey D, Premaraj S.
    Journal: Orthod Craniofac Res; 2017 Jun; 20 Suppl 1():134-138. PubMed ID: 28643906.
    Abstract:
    OBJECTIVES: To evaluate the surface properties of two commercially available sealants (Pro Seal® (PS) and Opal® SealTM (OS)) in terms of fluoride(F) release, biofilm formation of Streptococcus mutans and Lactobacillus and the ability to resist acid penetration. SETTING: University of Nebraska Medical Center. MATERIAL & METHODS: Discs of similar diameter and thickness were made from OS and PS. Discs were soaked in double-distilled water, and F released was measured with fluoride meter daily for 14 consecutive days, then at 21 and 28 days. Biofilm formation was evaluated with Streptococcus mutans and Lactobacilli grown on sealant discs using confocal microscopy. Extracted human teeth (n=8) with sealant-coated buccal surfaces and untreated lingual surfaces were exposed to 0.1M lactic acid(pH=4.5) to test the acid penetration. After 1-4 weeks of exposure, teeth were subjected to microhardness testing and SEM microscopy. RESULTS: PS released significantly higher levels of F than OS. PS showed more S. mutans adherence than OS, whereas Lactobacillus did not show any differences in adherence. Both sealants protected enamel surfaces, showing statistically significant difference in the depth of acid penetration compared to their unsealed control sides. CONCLUSION: F release was adequate to aid in remineralization, although clinically it would not likely aid in preventing demineralization as there was no prolonged release of F by both sealants tested. S. mutans adherence to OS surface was less compared to PS surface, which could be of relevance in biofilm formation and white spot lesions. Both sealants protected enamel surfaces from acid penetration.
    [Abstract] [Full Text] [Related] [New Search]