These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information. Author: Zhang W, Xu J, Li Y, Zou X. Journal: IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):109-116. PubMed ID: 28650821. Abstract: The identification of essential proteins in protein-protein interaction (PPI) networks is of great significance for understanding cellular processes. With the increasing availability of large-scale PPI data, numerous centrality measures based on network topology have been proposed to detect essential proteins from PPI networks. However, most of the current approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology annotation information. In this paper, we propose a novel centrality measure, called TEO, for identifying essential proteins by combining network topology, gene expression profiles, and GO information. To evaluate the performance of the TEO method, we compare it with five other methods (degree, betweenness, NC, Pec, and CowEWC) in detecting essential proteins from two different yeast PPI datasets. The simulation results show that adding GO information can effectively improve the predicted precision and that our method outperforms the others in predicting essential proteins.[Abstract] [Full Text] [Related] [New Search]