These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in Cerebral Oxygenation in Preterm Infants With Progressive Posthemorrhagic Ventricular Dilatation.
    Author: Kochan M, McPadden J, Bass WT, Shah T, Brown WT, Tye GW, Vazifedan T.
    Journal: Pediatr Neurol; 2017 Aug; 73():57-63. PubMed ID: 28651978.
    Abstract:
    BACKGROUND: Optimal timing of intervention in neonatal progressive posthemorrhagic hydrocephalus is often a difficult decision. Unchecked hydrocephalus can lead to irreversible brain injury through impaired perfusion, while placement of a shunt is not without long-term morbidity. The purpose of this study was to assess the use of near-infrared spectroscopy to measure changes in regional cerebral oxygen saturation as an indicator of cerebral perfusion in infants with progressive posthemorrhagic ventricular dilatation. METHODS: Near-infrared spectroscopy was used to measure regional cerebral oxygen saturation for more than a one-hour period in infants within 24 hours of cranial ultrasound. Simultaneous pulse oximetry was recorded and oxygen extraction was calculated. Ventricular size was measured by ultrasound using the frontal-occipital horn ratio and compared with average oxygen saturation and oxygen extraction. Statistical analysis was done using the Spearman rank test and analysis of variance. RESULTS: Ventricular measurements were made in 20 very low birth weight premature infants with periventricular-intraventricular hemorrhage and 12 infants with normal ultrasound scans. Ventricular dilatation was associated with lower cerebral oxygen saturation and higher oxygen extraction (P < 0.001). Progressive ventricular dilatation was inversely related to changes in cerebral oxygen saturation (P < 0.001). CONCLUSIONS: Progressive posthemorrhagic ventricular dilatation is associated with a significant decrease in cerebral oxygenation and increase in oxygen extraction suggesting a decrease in cerebral perfusion. Near-infrared spectroscopy could potentially provide additional clinical information to assist in determining optimal timing of surgical intervention in preterm infants with progressive ventricular enlargement.
    [Abstract] [Full Text] [Related] [New Search]