These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of tolbutamide on tetraethylammonium-induced postsynaptic zinc signals at hippocampal mossy fiber-CA3 synapses.
    Author: Bastos FC, Corceiro VN, Lopes SA, de Almeida JG, Matias CM, Dionisio JC, Mendes PJ, Sampaio Dos Aidos FDS, Quinta-Ferreira RM, Quinta-Ferreira ME.
    Journal: Can J Physiol Pharmacol; 2017 Sep; 95(9):1058-1063. PubMed ID: 28654763.
    Abstract:
    The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.
    [Abstract] [Full Text] [Related] [New Search]