These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Author: Ge F, Wang C, Wang W, Liu W, Wu B. Journal: Oncol Rep; 2017 Aug; 38(2):1133-1139. PubMed ID: 28656284. Abstract: Previous studies have shown that microRNA-31 (miR-31) functions as a tumor-suppressor in various types of cancer. In the present study we found that miR-31 was significantly downregulated in gastric cancer (GC) as determined by microRNA (miRNA) array screening analysis. Although aberrant expression of miR-31 has been found in different types of cancer, its pathophysiological effect and role in tumorigenesis still remain to be elucidated. In the present study, we detected miR-31 expression in both metastatic GC cell lines and tissues that are potentially highly metastatic by real-time polymerase chain reaction (PCR). Transwell and scratch healing assays were conducted to examine whether the ectopic expression of miR-31 could modify the invasion and migration abilities of GC cells in vitro. We found that miR-31 inhibited GC metastasis in a nude mouse xenograft model of GC. Luciferase reporter assays demonstrated that miR-31 could directly bind to the 3' untranslated region of RhoA and downregulate the expression of RhoA. Significant downregulation of miR-31 in 78 GC tissues and four GC cell lines was examined by real-time reverse transcription-PCR. Moreover, the decreased expression of miR-31 was demonstrated to be associated with lymph node metastasis, poor pT and pN stage, and invasion ability into lymphatic vessels as determined by the Mann-Whitney U test. We also found that miR-31 could inhibit cell invasion and migration abilities in vitro using the Transwell and scratch healing assays in BGC-823, SGC-7901, MGC-803 as well as AGS cells. Experiments in a nude mouse model revealed that miR-31 suppressed tumorigenicity in vivo. The luciferase activity assay and western blotting indicated that RhoA was the potential target of miR-31 in GC cells. Collectively, our results provide important evidence that the downregulation of miR-31 inhibited the invasion and migration abilities of GC cells through direct targeting of the tumor metastasis‑associated gene, RhoA. These findings suggest that miR-31 may be a promising therapeutic candidate in the treatment of GC metastasis.[Abstract] [Full Text] [Related] [New Search]