These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous adsorption of Remazol brilliant blue and Disperse orange dyes on red mud and isotherms for the mixed dye system. Author: Gadigayya Mavinkattimath R, Shetty Kodialbail V, Govindan S. Journal: Environ Sci Pollut Res Int; 2017 Aug; 24(23):18912-18925. PubMed ID: 28656570. Abstract: The paper presents the adsorption of Remazol brilliant blue (RBB) and Disperse orange 25 (DO25) dyes from aqueous solution of the mixture of dyes onto concentrated sulphuric acid-treated red mud (ATRM). First-order derivative spectrophotometric method was developed for the analysis of RBB and DO25 in mixed dye aqueous solution to overcome the limitations arising due to interference in the zero-order spectral method. The optimum conditions to maximize RBB adsorption favoured the adsorption of RBB, and those for DO25 favoured DO25 adsorption from the mixed dye aqueous solutions. Presence of a second dye always inhibited the adsorption of a target dye. The uptake and percentage adsorption of each of the dyes onto ATRM from the aqueous solution of the mixture of dyes decreased considerably with increasing concentrations of the other dye showing the antagonistic effect. Monocomponent Langmuir isotherm fitted the mixed dye adsorption equilibrium data better than the monocomponent Freundlich isotherm. However, monocomponent models are suitable for the fixed concentration of the other dye. Modified Langmuir isotherm model adequately predicted the multi-component adsorption equilibrium data for RBB-DO25-ATRM adsorption system with a good accuracy and is more generic from the application point of view.[Abstract] [Full Text] [Related] [New Search]