These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The emergence and transient behaviour of collective motion in active filament systems.
    Author: Suzuki R, Bausch AR.
    Journal: Nat Commun; 2017 Jun 28; 8(1):41. PubMed ID: 28659581.
    Abstract:
    Most living systems, ranging from animal flocks, self-motile microorganisms to the cytoskeleton rely on self-organization processes to perform their own specific function. Despite its importance, the general understanding of how individual active constituents initiate the intriguing pattern formation phenomena on all these different length scales still remains elusive. Here, using a high density actomyosin motility assay system, we show that the observed collective motion arises from a seeding process driven by enhanced acute angle collisions. Once a critical size is reached, the clusters coarsen into high and low density phases each with fixed filament concentrations. The steady state is defined by a balance of collision induced randomization and alignment effects of the filaments by multi-filament collisions within ordered clusters.Self-organization is observed in cytoskeletal systems but emergence of order from disorder is poorly understood. Using a high density actomyosin system, the authors capture the transition from disorder to order, which is driven by enhanced alignment effects caused by increase in multi-filament collisions.
    [Abstract] [Full Text] [Related] [New Search]