These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: microRNA-145-3p inhibits non-small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway. Author: Chen GM, Zheng AJ, Cai J, Han P, Ji HB, Wang LL. Journal: J Cell Biochem; 2018 Jan; 119(1):885-895. PubMed ID: 28661070. Abstract: The mammalian target of rapamycin (mTOR) pathway is dysregulated in more than 50% of all human malignancies and is a major target in cancer treatment. In this study, we explored the underlying mechanism involving microRNA-145-3p (miR-145-3p) in the development and progression of non-small cell lung cancer (NSCLC) by targeting PDK1 via the mTOR signaling pathway. NSCLC tissues and adjacent normal tissues were obtained from 83 NSCLC patients. miR-145-3p, PDK1, and mTOR levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Human NSCLC cell lines A549 and H1299 were transfected with miR-145-3p and siPDK1 to confirm the effect of miR-145-3p and PDK1 on NSCLC cells in vitro. Cell growth was evaluated by a CCK8 assay. Cell motility and chemotaxis analysis were determined by the scratch test and chemotaxis assay, respectively. The protein levels of PDK1 and mTOR were measured using the western blotting. Results showed lower level of miR-145-3p and higher levels of PDK1 and mTOR in NSCLC tissues compared to the adjacent normal tissues. In vitro results showed that cell growth, cell motility, and chemotaxis were all inhibited in cells transfected with miR-145-3p and those transfected with siPDK. Additionally, dual luciferase reporter gene assay helped confirmed that PDK1 is a target of miR-145. Finally, levels of PDK1, mTOR, and phosphorylated-mTOR were lower in cells transfected with miR-145-3p as well as those with siPDK1. These findings indicate that miR-145-3p may inhibit cell growth, motility, and chemotaxis in NSCLC by targeting PDK1 through suppressing the mTOR pathway.[Abstract] [Full Text] [Related] [New Search]