These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Excitatory transmitter release induced by high concentrations of gamma-aminobutyric acid (GABA) in crayfish neuromuscular junctions. Author: Finger W. Journal: Pflugers Arch; 1985 Oct; 405(3):265-73. PubMed ID: 2866487. Abstract: At the neuromuscular junction of very small crayfish (0.4-2 g) addition of gamma-aminobutyric acid (GABA) to the superfusing solution at concentrations exceeding 100 mmol/l elicited high frequency release of excitatory transmitter quanta. In seven experiments single application of 500 mmol/l GABA gave rise to instantaneous release of 70,000 to 130,000 quanta. These stores of transmitter were released by GABA in a first order process with time constants, tau q, of between 9 s and 20 s, the maximum rate of release, ñ0, reaching 10,000 quanta/s in some cases. After release had ceased in the presence of GABA, the preparation was allowed to recover for five minutes in normal solution. Subsequently, a second trial evoked about 50% of the release induced during the first application of GABA. Pretreatment of the preparation with 2 mumol/l serotonin (5-HT) facilitated GABA-induced transmitter release resulting in larger rates of release and consequently in a larger output of transmitter by a factor of about 3. The largest amount of transmitter released on a single application of GABA in the presence of serotonin comprised about 220,000 quanta with a maximum rate of release ñ0 approximately equal to 25,000 quanta/s. The release evoked by high GABA-concentrations did not depend markedly on extracellular Ca2+ or Mg2+, but required extracellular Na+. The effects induced by high concentrations of GABA on release of excitatory transmitter quanta were quantitatively similar to the effects of high glycine-concentrations on release of quanta from the inhibitory terminals (Finger 1983a, b).[Abstract] [Full Text] [Related] [New Search]