These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Adenosine A2a Receptor Blockade Diminishes Wnt/β-Catenin Signaling in a Murine Model of Bleomycin-Induced Dermal Fibrosis.
    Author: Zhang J, Corciulo C, Liu H, Wilder T, Ito M, Cronstein B.
    Journal: Am J Pathol; 2017 Sep; 187(9):1935-1944. PubMed ID: 28667836.
    Abstract:
    Adenosine A2a receptor (A2aR) stimulation promotes the synthesis of collagens I and III, and we have recently demonstrated that there is crosstalk between the A2aR and WNT/β-catenin signaling pathway. In in vitro studies, A2aR signaling for collagen III expression was mediated by WNT/β-catenin signaling in human dermal fibroblasts; we further verified whether the crosstalk between A2aR and Wnt/β-catenin signaling was involved in diffuse dermal fibrosis in vivo. Wnt-signaling reporter mice (Tcf/Lef:H2B-GFP) were challenged with bleomycin and treated with the selective A2aR antagonist istradefylline (KW6002) or vehicle. Dermal fibrosis was quantitated and nuclear translocation of β-catenin in fibroblasts was assessed by double-staining for Green fluorescent protein or dephosphorylated β-catenin or β-catenin phosphorylated at Ser552, and vimentin. KW6002 significantly reduced skin thickness, skinfold thickness, breaking tension, dermal hydroxyproline content, myofibroblast accumulation, and collagen alignment in bleomycin-induced dermal fibrosis. Also, there was increased expression of Tcf/Lef:H2B-GFP reporter in bleomycin-induced dermal fibrosis, an effect that was diminished by treatment with KW6002. Moreover, KW6002 significantly inhibited nuclear translocation of Tcf/Lef:H2B-GFP reporter, as well as dephosphorylated β-catenin and β-catenin phosphorylated at Ser552. Our work supports the hypothesis that pharmacologic blockade of A2aR inhibits the WNT/β-catenin signaling pathway, contributing to its capacity to inhibit dermal fibrosis in diseases such as scleroderma.
    [Abstract] [Full Text] [Related] [New Search]