These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
    Author: Zhu L, Seror J, Day AJ, Kampf N, Klein J.
    Journal: Acta Biomater; 2017 Sep 01; 59():283-292. PubMed ID: 28669720.
    Abstract:
    UNLABELLED: The boundary layers coating articular cartilage in synovial joints constitute unique biomaterials, providing lubricity at levels unmatched by any human-made materials. The underlying molecular mechanism of this lubricity, essential to joint function, is not well understood. Here we study the interactions between surfaces bearing attached hyaluronan (hyaluronic acid, or HA) to which different phosphatidylcholine (PC) lipids had been added, in the form of small unilamellar vesicles (SUVs or liposomes), using a surface force balance, to shed light on possible cartilage boundary lubrication by such complexes. Surface-attached HA was complexed with different PC lipids (hydrogenated soy PC (HSPC), 1,2-dimyristoyl-sn-glycero-3-PC (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC)), followed by rinsing. Atomic force microscopy (AFM) and cryo-scanning electron microscopy (Cryo-SEM) were used to image the HA-PC surface complexes following addition of the SUVs. HA-HSPC complexes provide very efficient lubrication, with friction coefficients as low as μ∼0.001 at physiological pressures P≈150atm, while HA-DMPC and HA-POPC complexes are efficient only at low P (up to 10-20atm). The friction reduction in all cases is attributed to hydration lubrication by highly-hydrated phosphocholine groups exposed by the PC-HA complexes. The greater robustness at high P of the HSPC (C16(15%),C18(85%)) complexes relative to the DMPC ((C14)2) or POPC (C16, C18:1) complexes is attributed to the stronger van der Waals attraction between the HSPC acyl tails, relative to the shorter or un-saturated tails of the other two lipids. Our results shed light on possible lubrication mechanisms at the articular cartilage surface in joints. STATEMENT OF SIGNIFICANCE: Can designed biomaterials emulate the unique lubrication ability of articular cartilage, and thus provide potential alleviation to friction-related joint diseases? This is the motivation behind the present study. The principles of cartilage lubrication have attracted considerable attention for decades, and several models have been proposed to elucidate it, however, the mechanism of this ultralow friction is still not clear. In this paper we explore the recent suggestion that its efficient lubrication arises from boundary layers of hyaluronan-lipid complexes at its surface, in particular exploring a range of different phosphatidylcholines (PCs) mimicking the wide range of PCs in synovial joints. The present study suggests a synergistic lubricating behavior of the different lipids in living joints, and potential treatment directions using such biomaterial complexes for widespread cartilage-friction-related diseases such as osteoarthritis.
    [Abstract] [Full Text] [Related] [New Search]