These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering.
    Author: Zhang M, Guo B.
    Journal: Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671759.
    Abstract:
    Silk fibroin (SF) with good biocompatibility and degradability has great potential for tissue engineering. However, the SF based scaffolds lack the electroactivity to regulate the myogenic differentiation for the regeneration of muscle tissue, which is sensitive to electrical signal. Herein, a series of electroactive biodegradable scaffolds based on SF and water-soluble conductive poly(aniline-co-N-(4-sulfophenyl) aniline) (PASA) via a green method for skeletal muscle tissue engineering are designed. SF/PASA scaffolds are prepared by vortex of aqueous solution of SF and PASA under physiological condition. Murine-derived L929 fibroblast and C2C12 myoblast cells are used to evaluate cytotoxicity of SF/PASA scaffolds. Moreover, myogenic differentiation of C2C12 cells is investigated by analyzing the morphology of myotubes and related gene expression. These results suggest that electroactive SF/PASA scaffolds with a suitable microenvironment, which can enhance the myogenic differentiation of C2C12 cells, have a great potential for skeletal muscle regeneration.
    [Abstract] [Full Text] [Related] [New Search]