These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Author: Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E. Journal: Sci Rep; 2017 Jul 06; 7(1):4795. PubMed ID: 28684738. Abstract: Doxorubicin (DOX) is the mainstay chemotherapeutic agent against a variety of human neoplasmas. However, its clinical utility is limited by its marked cardiotoxicity. Chrysin, is a natural flavone which possesses antioxidant, anti-inflammatory and anti-cancer properties. The current study aimed to investigate the potential protective effect of chrysin against DOX-induced chronic cardiotoxicity and the underlying molecular mechanisms. Male Sprague-Dawley rats were treated with either DOX (5 mg/kg, once a week) and/or chrysin (50 mg/kg, four times a week) for four weeks. Chrysin prevented DOX-induced cardiomyopathy which was evident by conduction abnormalities, elevated serum CKMB and LDH and histopathological changes. Chrysin also ameliorated DOX-induced oxidative stress by decreasing lipid peroxidation and upregulating the antioxidant enzymes. Moreover, chrysin attenuated DOX-induced apoptosis via decreasing expression of p53, Bax, Puma, Noxa, cytochrome c and caspase-3 while increasing expression of Bcl-2. DOX induced activation of MAPK; p38 and JNK and increased expression of NF-κB. Meanwhile, DOX suppressed AKT pathway via decreasing expression of its upstream activator VEGF and increasing expression of PTEN. Conversely, chrysin effectively neutralised all these effects. Collectively, these findings indicate that chrysin effectively protected against DOX-induced cardiomyopathy via suppressing oxidative stress, p53-dependent apoptotic pathway, MAPK and NF-κB pathways while augmenting the VEGF/AKT pathway.[Abstract] [Full Text] [Related] [New Search]