These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estimation of thermodynamic stability of human carbonic anhydrase IX from urea-induced denaturation and MD simulation studies.
    Author: Idrees D, Rahman S, Shahbaaz M, Haque MA, Islam A, Ahmad F, Hassan MI.
    Journal: Int J Biol Macromol; 2017 Dec; 105(Pt 1):183-189. PubMed ID: 28688947.
    Abstract:
    Carbonic anhydrase IX (CAIX) is a transmembrane glycoprotein, overexpressed in cancer cells under hypoxia condition. In cancerous cells, CAIX plays an important role to combat the deleterious effects of a high rate of glycolytic metabolism. In order to favor tumor survival, CAIX maintains intracellular pH neutral or slightly alkaline and extracellular acidic pH. The equilibrium unfolding and conformational stability of CAIX were measured in the presence of increasing urea concentrations to understand it's structural features under stressed conditions. Two different spectroscopic techniques were used to follow urea-induced denaturation and observed that urea induces a reversible denaturation of CAIX. Coincidence of the normalized transition curves of both optical properties suggesting that denaturation of CAIX is a two-state process, i.e., native state ↔ denatured state. Each denaturation curve was analyzed to estimate thermodynamic parameters, ΔGD0,value of Gibbs free energy change (ΔGD) associated with the urea-induced denaturation, Cm (midpoint of denaturation) and m (=δΔGD/δ[urea]). We further performed molecular dynamics simulation of CAIX for 50ns to see the dynamics of protein structure in the presence of different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.
    [Abstract] [Full Text] [Related] [New Search]