These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system.
    Author: Zhang J, Tian Y, Yin L, Zuo W, Gong Z, Zhang J.
    Journal: Environ Sci Pollut Res Int; 2017 Aug; 24(24):19920-19926. PubMed ID: 28689286.
    Abstract:
    In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H2S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H2S removal from the pyrolysis of raw sewage sludge (SS) and sewage sludge spiked with conditioner CaO (SS-CaO) were investigated. The results showed that CaO played a positive role on sulfur fixation during the pyrolysis process. It was found that SS-CaO (10 wt.%) contributed to about 35% of H2S removal at the first stage (ICMP process). Additionally, the CWO process was demonstrated to have promising potential for posttreatment of remaining H2S gas. At the Fe3+ concentration of 30 g/L, the maximum H2S removal efficiency of 94.8% was obtained for a single Fe3+/Cu2+ solution. Finally, at the pyrolysis temperature of 800 °C, 99.7% of H2S was eliminated by the integrated two-stage system meeting the discharge standard of China. Therefore, the integrated two-stage system of ICMP + CWO may provide a promising strategy to remove H2S dramatically for the biomass pyrolysis industry.
    [Abstract] [Full Text] [Related] [New Search]