These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pharmacology of amino acid receptors on vertebrate primary afferent nerve fibres. Author: Evans RH. Journal: Gen Pharmacol; 1986; 17(1):5-11. PubMed ID: 2868969. Abstract: Structure-activity of primary afferent depolarising action (PAD) mediated by gamma-aminobutyrate (GABA) analogues suggests a difference between subsynaptic receptors located at fibre terminations within the dorsal horn and axonal receptors which are distributed throughout non-synaptic regions. The interaction of the bicuculline-sensitive GABA receptor (GABA A) ionophore complex with barbiturates and benzodiazepines suggests that at least three binding sites are required to explain the independent GABA-mimetic, GABA-potentiating and picrotoxin-reversing effects of such agents. Difficulties with explanation of the depressant effects of baclofen on spinal transmission, in terms of the bicuculline-resistant GABA (GABA B) receptor hypothesis, are mentioned. Glutamate-induced PAD of low threshold afferents is mediated indirectly through release of potassium. However, such terminals possess receptors (possibly autoreceptors for L-glutamate), activated by (+)2-amino-4-phosphonobutyrate, which cause depression of transmitter release. Primary afferent C-fibres possess receptors which are selectively activated by kainate and which mediate picrotoxin-resistant PAD. Such receptors may be involved in the presynaptic conditioning of C-fibre transmitter release. The peripheral terminals of vestibular primary afferents, in amphibia, possess excitatory amino acid receptors which are probably activated by the transmitter released from hair cells.[Abstract] [Full Text] [Related] [New Search]