These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: One-step synthesis of functional pNR/rGO composite as a building block for enhanced ascorbic acid biosensing.
    Author: Liu L, Zhai J, Zhu C, Han L, Ren W, Dong S.
    Journal: Anal Chim Acta; 2017 Aug 15; 981():34-40. PubMed ID: 28693727.
    Abstract:
    An electrochemical sensor for ascorbic acid (AA) was prepared via an one-step electrochemical approach by reducing graphene oxide (rGO) and co-polymerizing neutral red (NR) and rGO to form a pNR/rGO hybrid film on the glassy carbon electrode (pNR/rGO-GCE). Structures and properties of the obtained pNR/rGO film were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and UV-vis techniques. A significant decrease of charge-transfer resistance (Rct) from over 20,000 Ω for pNR-GCE to 130 Ω for pNR/rGO-GCE was validated by electrochemical impedance spectroscopy (EIS) measurement. Particularly, electrochemical data revealed that pNR/rGO film could effectively enhance the electron transfer between AA and electrode, and thus reduce the overpotential of AA oxidation. Two linear regression areas with 0.05-0.75 mM and 0.9-24.9 mM, detection limit with 1.4 μM, and stability over 2 weeks were obtained. The coexisting distractions such as dopamine, uric acid and glucose were detected and eliminated. Moreover, the pNR/rGO-GCE gave the same determination results as that obtained with HPLC when measuring real samples, including vitamin C beverage and human serum.
    [Abstract] [Full Text] [Related] [New Search]