These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. Author: Raei M, Shahidi F, Farhoodi M, Jafari SM, Rafe A. Journal: Int J Biol Macromol; 2017 Dec; 105(Pt 1):281-291. PubMed ID: 28693995. Abstract: Our aim was to entrap lactoferrin (LF) in complex nano-particles of whey protein isolate (WPI)-high methoxyl pectin (HMP) with the ratios of 2:1, 1:1, and 1:2 through acidification at pH values of 3, 3.5, and 4. The zeta-potential, size, sedimentable-complex yield, LF content, encapsulation efficiency, SEM, AFM, FTIR, and DSC of nano-particles were investigated. Our results revealed that almost all analyzed parameters of the final nano-particles were related to preparation pH value, WPI/HMP ratios, and acidification methods In both methods of pre- and post-acidification, the zeta potential was decreased via decreasing of pH from 4 to 3 and particle size was increased at higher HMP ratios to WPI. In general, the pre-blending acidification provided a larger mass of complexes compared with post-blending counterparts. Also, the nano-particles produced by WPI/HMP with the ratio of 2:1 at pH=3.5 had the smallest sizes. The highest LF content of the complexes as well as the optimal entrapment efficiency was observed at pH=3.5, in both methods of post and pre-blending. Finally, the pre-blending by a ratio of 2:1 for WPI/HMP was chosen as the optimal treatment for producing nano-particles containing LF. This was confirmed by SEM, AFM, FTIR, and DSC studies.[Abstract] [Full Text] [Related] [New Search]