These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Deletion of 12/15-lipoxygenase accelerates the development of aging-associated and instability-induced osteoarthritis.
    Author: Habouri L, El Mansouri FE, Ouhaddi Y, Lussier B, Pelletier JP, Martel-Pelletier J, Benderdour M, Fahmi H.
    Journal: Osteoarthritis Cartilage; 2017 Oct; 25(10):1719-1728. PubMed ID: 28694081.
    Abstract:
    OBJECTIVE: 12/15-Lipoxygenase (12/15-LOX) catalyzes the generation of various anti-inflammatory lipid mediators, and has been implicated in several inflammatory and degenerative diseases. However, there is currently no evidence that 12/15-LOX has a role in osteoarthritis (OA). The aim of this study was to investigate the role of 12/15-LOX in the pathogenesis of OA. METHODS: The development of aging-associated and destabilization of the medial meniscus (DMM)-induced OA were compared in 12/15-LOX-deficient (12/15-LOX-/-) and wild-type (WT) mice. The extent of cartilage damage was evaluated by histology. The expression of OA markers was evaluated by immunohistochemistry and RT-PCR. Cartilage explants were stimulated with IL-1α in the absence or presence of the 12/15-LOX metabolites, 15-hydroxyeicosatetraenoic acids (15-HETE), 13-hydroxyoctadecadienoic acid (13-HODE) or lipoxin A4 (LXA4), and the levels of matrix metalloproteinases-13 (MMP-13), Nitric oxide (NO) and prostaglandin E2 (PGE2) were determined. The effect of LXA4 on the progression of OA was evaluated in wild type (WT) mice. RESULTS: The expression of 12/15-LOX in cartilage increased during the progression of DMM-induced OA and with aging in WT mice. Cartilage degeneration was more severe in 12/15-LOX-/- mice compared to WT mice in both models of OA, and this was associated with increased expression of MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs, aggrecanases (ADAMTS5), inducible NO synthases (iNOS), and mPGES-1. Treatment of cartilage explants with 12/15-LOX metabolites, suppressed IL-1α-induced production of MMP-13, NO and PGE2, with LXA4 being the most potent. Intra-peritoneal injection of LXA4 reduced the severity of DMM-induced cartilage degradation. CONCLUSIONS: These data suggest an important role of 12/15-LOX in the pathogenesis of OA. They also suggest that activation of this pathway may provide a novel strategy for prevention and treatment of OA.
    [Abstract] [Full Text] [Related] [New Search]