These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PSD-93 Attenuates Amyloid-β-Mediated Cognitive Dysfunction by Promoting the Catabolism of Amyloid-β.
    Author: Yu L, Liu Y, Yang H, Zhu X, Cao X, Gao J, Zhao H, Xu Y.
    Journal: J Alzheimers Dis; 2017; 59(3):913-927. PubMed ID: 28697571.
    Abstract:
    Amyloid-β (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Postsynaptic density protein 93 (PSD-93) is a key scaffolding protein enriched at postsynaptic sites. The aim of the present study was to examine whether PSD-93 overexpression could alleviate Aβ-induced cognitive dysfunction in APPswe/PS1dE9 (APP/PS1) mice by reducing Aβ levels in the brain. The level of PSD-93 was significantly decreased in the hippocampus of 6-month-old APP/PS1 mice compared with that in wild-type mice. Following lentivirus-mediated PSD-93 overexpression, cognitive function, synaptic function, and amyloid burden were investigated. The open field test, Morris water maze test, and fear condition test revealed that PSD-93 overexpression ameliorated spatial memory deficits in APP/PS1 mice. The facilitation of long-term potentiation induction was observed in APP/PS1 mice after PSD-93 overexpression. The expression of somatostatin receptor 4 (SSTR4) and neprilysin was increased, while the amyloid plaque load and Aβ levels were decreased in the brains of APP/PS1 mice. Moreover, PSD-93 interacted with SSTR4 and affected the level of SSTR4 on cell membrane, which was associated with the ubiquitination. Together, these findings suggest that PSD-93 attenuates spatial memory deficits and decreases amyloid levels in APP/PS1 mice, which might be associated with Aβ catabolism, and overexpression of PSD-93 might be a potential therapy for AD.
    [Abstract] [Full Text] [Related] [New Search]