These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Alpha 2-adrenergic hyperpolarization is not involved in slow synaptic inhibition in amphibian sympathetic ganglia. Author: Rafuse PE, Smith PA. Journal: Br J Pharmacol; 1986 Feb; 87(2):409-16. PubMed ID: 2869815. Abstract: The adrenaline-induced hyperpolarization (AdH), slow inhibitory postsynaptic potential (slow i.p.s.p.) and hyperpolarizing phase of the response to methacholine (MChH) in Rana pipiens sympathetic ganglia were studied by means of the sucrose-gap technique. Desmethylimipramine (DMI, 0.5 microM) lowered the EC50 for adrenaline from 1.65 microM (1.23-2.21 microM, n = 10) to 0.30 microM (0.21-0.41 microM, n = 8). DMI did not potentiate the slow i.p.s.p. or the MChH. Propranolol, sotalol or prazosin (1 microM) did not antagonize the AdH. The response was antagonised by phentolamine (IC50 = 0.53 microM), yohimbine (IC50 = 6.2 nM) and idazoxan (IC50 = 0.59 microM). Yohimbine (0.1 microM) did not reduce the amplitude of the slow i.p.s.p. or the MChH. The slow i.p.s.p. was eliminated in Ringer solution containing Cd2+ (100 microM). This concentration of Cd2+ did not reduce the amplitude of the MChH. Alpha-Methylnoradrenaline produced a concentration-dependent hyperpolarization with an EC50 of 0.31 microM (0.13-0.73 microM, n = 5), in the presence of DMI (0.5 microM). These results are consistent with the hypothesis that the AdH may be generated by activation of a receptor similar to the mammalian alpha 2-adrenoceptor. No evidence was found in support of the hypothesis that an adrenergic interneurone is involved in the synaptic pathway for the slow i.p.s.p.[Abstract] [Full Text] [Related] [New Search]