These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of AKR4C15, a Novel Member of Aldo-Keto Reductase, in Comparison with Other Rice AKR(s).
    Author: Auiyawong B, Narawongsanont R, Tantitadapitak C.
    Journal: Protein J; 2017 Aug; 36(4):257-269. PubMed ID: 28699078.
    Abstract:
    Environmental stresses often cause a rapid and excessive accumulation of reactive oxygen species (ROS), the toxicity of which is further amplified by downstream aldehyde production. Aldo-keto reductase (AKR) is a group of enzymes metabolizing aldehyde/ketone to the corresponding alcohol using NADPH as the cofactor. In this study, OsI_20197 (AKR4C15), a novel member of AKR4 subfamily C, was isolated and biochemically characterized. Kinetic studies on bacterially-expressed recombinant AKR4C15 revealed that the enzyme was capable of metabolizing a wide variety of aldehydes but clearly exhibited a preference for three carbon compounds, i.e. methylglyoxal, malondialdehyde and glyceraldehyde. In comparison with His-tagged proteins of AKR4C9 from Arabidopsis and several other rice AKR(s): OsI_04426, OsI_04428, OsI_04429, and OsI_15387, AKR4C15 was the one capable of most efficiently metabolizing MDA and had the highest value of catalytic efficiency, which was higher than the value of AKR4C9, approximately, by 30-fold; while its capability of metabolizing MG was on par with AKR4C9, OsI_04426 and OsI_04428 (AKR4C14); and was considerably higher than the activity of OsI_04429 and OsI_15387. In vivo research on transgenic Arabidopsis seedlings ectopically-expressing AKR4C15 showed that the levels of both MDA and MG were also significantly lower than the levels in wild-type seedlings under both normal and stress conditions, emphasizing the role of AKR4C15 in MG and MDA metabolism. In conclusion, AKR4C15, together with OsI_04426 and AKR4C14, may play protective roles against small reactive aldehydes and medium-chain aldehydes.
    [Abstract] [Full Text] [Related] [New Search]