These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on polypeptide composition, hydrolytic activity and proton conduction of mitochondrial FoF1 H+ ATPase in regenerating rat liver.
    Author: Buckle M, Guerrieri F, Pazienza A, Papa S.
    Journal: Eur J Biochem; 1986 Mar 03; 155(2):439-45. PubMed ID: 2869946.
    Abstract:
    A study of the FoF1 ATPase complex of mitochondria isolated from regenerating rat liver following partial (70%) hepatectomy is presented. As we have previously reported, ATPase activity in submitochondrial particles prepared from regenerating rat liver 24 h following partial hepatectomy was depressed by 75% with respect to controls (submitochondrial particles from sham-operated animals). Polyacrylamide gel electrophoresis and immunodecoration using an antibody raised against isolated bovine heart F1 sector of the FoF1 ATPase indicated a substantial decrease in F1 content in the mitochondrial membrane from regenerating rat liver. Proton conduction by the FoF1 ATPase complex was studied by following the anaerobic relaxation of the transmembrane proton gradient (delta mu H+) generated by succinate-driven respiration. In control rat-liver submitochondrial particles containing the FoF1 moiety of the ATPase complex, anaerobic relaxation of delta mu H+ showed biphasic kinetics, whilst the same process in particles derived from regenerating rat liver exhibited monophasic kinetics and was significantly more rapid. Oligomycin and N,N-dicyclohexyl carbodiimide [(cHxN)2C] inhibited proton conductance by the F1-Fo ATPase complex in submitochondrial particles from both control and regenerating rat liver. Binding of [14C](cHxN)2C and immunodecoration using an antibody raised against bovine heart oligomycin-sensitivity-conferring protein (OSCP) indicated no difference in the content of either the (cHxN)2C binding protein or OSCP between control and regenerating rat-liver mitochondrial membranes. The results reported show that the structural and functional integrity of the Fo-F1 ATPase of rat liver is severely perturbed during regeneration.
    [Abstract] [Full Text] [Related] [New Search]