These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective effects of melatonin and memantine in human retinal pigment epithelium (ARPE-19) cells against 2-ethylpyridine-induced oxidative stress: implications for age-related macular degeneration.
    Author: Bardak H, Uğuz AC, Bardak Y.
    Journal: Cutan Ocul Toxicol; 2018 Jun; 37(2):112-120. PubMed ID: 28707481.
    Abstract:
    PURPOSE: To investigate the possible protective effects of melatonin and memantine (MMT) against 2-ethylpyridine (2-EP)-induced oxidative stress and mitochondrial dysfunction in human RPE (ARPE-19) cells in vitro. MATERIALS AND METHODS: The ARPE-19 cells were divided into seven groups. Oxidative stress was triggered by incubating the ARPE-19 cells with 30 μM of 2-EP for 24 h. Then, 200 μM of melatonin was administered over three days and 20 μM of MMT over six hours prior to the experiment. The effects of melatonin and MMT on the intracellular calcium release mechanism, reactive oxygen species production, caspase-3 and caspase-9 activities, as well as vascular endothelial growth factor levels were measured. RESULTS: Melatonin and MMT were found to significantly decrease apoptosis levels. The intracellular calcium release was regulated by both melatonin and MMT. Further, melatonin and MMT significantly decreased both caspase-3 and caspase-9 activities, as well as pro-caspase and poly(ADP-ribose) polymerase expression, in ARPE-19 cells. Moreover, melatonin significantly increased the protective effect of MMT. The combination of melatonin and MMT significantly decreased 2-EP-induced oxidative toxicity and apoptosis by inhibiting the intracellular reactive oxygen species production and mitochondrial depolarization levels. CONCLUSIONS: These notable findings are the first to demonstrate the synergistic protective effects of melatonin and MMT against 2-EP-induced oxidative stress in ARPE-19 cells.
    [Abstract] [Full Text] [Related] [New Search]