These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Steroid sulfatase and filaggrin mutations in a boy with severe ichthyosis, elevated serum IgE level and moyamoya syndrome.
    Author: Zhang Q, Si N, Liu Y, Zhang D, Wang R, Zhang Y, Wang S, Liu X, Deng X, Ma Y, Ge P, Zhao J, Zhang X.
    Journal: Gene; 2017 Sep 10; 628():103-108. PubMed ID: 28710038.
    Abstract:
    X-linked ichthyosis (XLI) is a relatively common, recessive condition caused by mutations in the steroid sulfatase (STS) gene. Common loss-of-function mutations in the filaggrin gene (FLG) cause ichthyosis vulgaris and predispose individuals to atopic eczema. We report a case of a 6-year-old boy who presented with unusually severe XLI, an increased serum immunoglobulin E level (2120IU/ml) and moyamoya angiopathy. Whole-exome sequencing identified a gross deletion encompassing the STS in Xp22.31 and the p.K4022X FLG mutation. The deletion is at least 1.6Mb in size in the proband, based on real-time quantitative polymerase chain reaction results. No other genetic mutations related to ichthyosis, moyamoya or hyper-immunoglobulin E syndrome were detected. Furthermore, his mother's brothers suffered from mild XLI and only had a deletion encompassing the STS. Additionally, his father and older sister suffered from mild ichthyosis vulgaris and had the p.K4022X FLG mutation. We report the first case of XLI with concurrent moyamoya syndrome. Moreover, an IgE-mediated immune response may have triggered the moyamoya signaling cascade in this patient with ichthyosis. Furthermore, our study strengthens the hypothesis that filaggrin defects can synergize with an STS deficiency to exacerbate the ichthyosis phenotype in an ethnically diverse population.
    [Abstract] [Full Text] [Related] [New Search]