These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Author: Abdelrahman MA, Salama I, Gomaa MS, Elaasser MM, Abdel-Aziz MM, Soliman DH. Journal: Eur J Med Chem; 2017 Sep 29; 138():698-714. PubMed ID: 28715707. Abstract: The increased development of highly resistant bacterial strains and tuberculosis, constitute a serious public health threat, highlighting the urgent need of novel antibacterial agents. In this work, two novel series of nicotinic acid hydrazone derivatives (6a-r) and quinolone hydrazide derivatives (12a-l) were synthesized and evaluated as antimicrobial and antitubercular agents. The synthesized compounds were evaluated in vitro for their antibacterial, antifungal and antimycobacterial activities. Compounds 6f and 6p bearing the 3,4,5- (OCH3)3 and 2,5-(OCH3)2 benzylidene motifs were the most potent and as antibacterial, antifungal (MIC: 0.49-1.95 μg/mL) and (MIC: 0.49-0.98 μg/mL) respectively and antimycobacterial activity (MIC = 0.76 and 0.39 μg/mL) respectively. Besides, several derivatives, 6e, 6h, 6l-6o, 6q, 6r, 12a, 12b, 12e, 12h, 12k and 12l, exhibited significant antibacterial and antifungal activities with MIC values ranging from 1.95 to 7.81 μg/mL, they also displayed excellent to good activity against Mycobacterium tuberculosis with MIC range from 0.39 to 3.12 μg/mL. In addition, some of the most active compounds were tested for cytotoxic activities against human lung fibroblast normal cells (WI-38) and displayed low toxicity. Moreover, 2D-QSAR models to characterize the descriptors controlling the observed activities, were generated and validated.[Abstract] [Full Text] [Related] [New Search]