These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: SmI2(H2O)n Reduction of Electron Rich Enamines by Proton-Coupled Electron Transfer.
    Author: Kolmar SS, Mayer JM.
    Journal: J Am Chem Soc; 2017 Aug 09; 139(31):10687-10692. PubMed ID: 28718640.
    Abstract:
    Samarium diiodide in the presence of water and THF (SmI2(H2O)n) has in recent years become a versatile and useful reagent, mainly for reducing carbonyl-type substrates. This work reports the reduction of several enamines by SmI2(H2O)n. Mechanistic experiments implicate a concerted proton-coupled electron transfer (PCET) pathway, based on various pieces of evidence against initial outer-sphere electron transfer, proton transfer, or substrate coordination. A thermochemical analysis indicates that the C-H bond formed in the rate-determining step has a bond dissociation free energy (BDFE) of ∼32 kcal mol-1. The O-H BDFE of the samarium aquo ion is estimated to be 26 kcal mol-1, which is among the weakest known X-H bonds of stable reagents. Thus, SmI2(H2O)n should be able to form very weak C-H bonds. The reduction of these highly electron rich substrates by SmI2(H2O)n shows that this reagent is a very strong hydrogen atom donor as well as an outer-sphere reductant.
    [Abstract] [Full Text] [Related] [New Search]