These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microcapsules biologically prepared using Perilla frutescens (L.) Britt. essential oil and their use for extension of fruit shelf life.
    Author: Li N, Zhang ZJ, Li XJ, Li HZ, Cui LX, He DL.
    Journal: J Sci Food Agric; 2018 Feb; 98(3):1033-1041. PubMed ID: 28718920.
    Abstract:
    BACKGROUND: Perilla essential oil (EO) possesses high antioxidant, antimicrobial and insecticidal activities, and has proven to be more reliable than chemically synthesized food preservatives. Nevertheless, EOs have disadvantages of facile photo-degradation and oxidation, which limit their use in agriculture and food industries. Microencapsulation technology that generates a polymeric coating surrounding EOs could overcome these disadvantages. RESULTS: The EO concentration had a significant effect on encapsulation efficiency (EE) and loading capacity (LC). The best encapsulation conditions were obtained with 2% v/v EO, for which EE and LC were 57% and 36%, respectively. EO-loaded microspheres exhibited a crimped surface with phanic lumps by scanning electron microscopy. Thermal stability experiments revealed droplets that began to decompose sharply at 108 °C, with a 61% weight, loss, which was much lower than EOs of 98%. EO-loaded microcapsules demonstrated good antibacterial activity. Strawberry preservation studies showed that EO-loaded microcapsules could significantly inhibit strawberry decay, maintain the quality of strawberries and prolong shelf life. CONCLUSION: Perilla EO-loaded microcapsules were successfully prepared by ionic gelation and were effective at inhibiting several bacterial strains. EO-alginate microcapsules could effectively delay the volatilization of EO. Perilla EO-loaded microcapsules therefore have potential for use as an antimicrobial and preservative agent in the food industry. © 2017 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]