These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dopamine and somatostatin inhibit forskolin-stimulated prolactin and growth hormone secretion but not stimulated cyclic AMP levels in sheep anterior pituitary cell cultures.
    Author: Ray KP, Gomm JJ, Law GJ, Sigournay C, Wallis M.
    Journal: Mol Cell Endocrinol; 1986 May; 45(2-3):175-82. PubMed ID: 2872092.
    Abstract:
    Forskolin, an activator of adenylate cyclase, has been used to investigate the effects of raising pituitary cell cyclic AMP concentrations on prolactin and growth hormone secretion and to examine the role of cyclic AMP in the inhibitory actions of dopamine and somatostatin. Incubation of cultured ovine pituitary cells with forskolin (0.1-10 microM; 30 min) produced a modest dose-related increase in prolactin release (120-140% of basal) but a much greater stimulation of growth hormone secretion (170-420% of basal). Cellular cyclic AMP concentrations were only increased in the presence of 1 and 10 microM forskolin (2-5.5 times basal). A study of the time course for forskolin (10 microM) action showed that stimulation of prolactin (1.5-fold) and growth hormone (4.7-fold) secretion occurred over 15 min; subsequently (15-60 min) the rate of prolactin secretion from forskolin-treated cells was equivalent to that measured in controls, while growth hormone release remained elevated. Cellular cyclic AMP concentrations were also rapidly stimulated by forskolin (10 microM); they reached a maximum (12 times control) within 15 min, and then declined (15-60 min) but remained elevated relative to those in untreated cells (4.9 times control at 60 min). Dopamine (0.1 microM) inhibited basal secretion of both prolactin and growth hormone. In the presence of forskolin (0.1-10 microM), dopamine (0.1 microM) inhibited prolactin secretion to below the basal level and considerably attenuated the stimulation of growth hormone secretion. Similarly, somatostatin suppressed both basal and forskolin-induced prolactin and growth hormone secretion. However, neither dopamine nor somatostatin significantly decreased the stimulatory effect of forskolin on cellular cyclic AMP accumulation.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]