These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ammonia exposure and subsequent recovery trigger oxidative stress responses in juveniles of Brazilian flounder Paralichthys orbignyanus.
    Author: Maltez LC, Stringhetta GR, Enamorado AD, Okamoto MH, Romano LA, Monserrat JM, Sampaio LA, Garcia L.
    Journal: Fish Physiol Biochem; 2017 Dec; 43(6):1747-1759. PubMed ID: 28726029.
    Abstract:
    The effects of ammonia exposure and recovery on oxidative stress parameters and histology of juvenile Brazilian flounder Paralichthys orbignyanus were evaluated. The fish were exposed to 0.12, 0.28 and 0.57 mg NH3-N L-1, plus a control, for 10 days followed by the same recovery time in ammonia-free water. Gill, liver and muscle samples (n = 9) were collected after 1, 5 and 10 days of exposure and after recovery for oxidative stress analysis (antioxidant capacity against peroxyl radicals (ACAP); glutathione S-transferase (GST) activity; lipoperoxidation levels measured through thiobarbituric acid reactive substances (TBARS) content). For histological assessment, gill, liver and brain samples were collected. Exposure to all NH3-N concentrations induced different time- and dose-dependent changes in oxidative stress parameters. Reduced antioxidant capacity of the liver and muscle and enhanced TBARS levels in the gills and liver were demonstrated. Differently, a high ammonia concentration elicited lower hepatic TBARS levels. Enhanced GST activity in all organs and increased antioxidant capacity of the gills were also observed. No ammonia-induced histopathological effects were demonstrated. After recovery, most parameters (liver ACAP, GST activity in the muscle and liver and TBARS in the gills) returned to baseline levels. However, liver TBARS and gill GST activity remained altered 0.57 mg NH3-N L-1 treatment. The recovery period also led to a decrease in gill antioxidant capacity and an increase in muscle antioxidant capacity. In conclusion, a concentration of 0.12 mg NH3-N L-1 induces oxidative stress and antioxidant responses in juvenile Brazilian flounder. Moreover, a 10-day recovery period is not sufficient to restore fish homeostasis.
    [Abstract] [Full Text] [Related] [New Search]