These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Steady-state ATP synthesis by bacteriorhodopsin and chloroplast coupling factor co-reconstituted into asolectin vesicles. Author: Krupinski J, Hammes GG. Journal: Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4233-7. PubMed ID: 2872676. Abstract: A method was developed for the co-reconstitution of bacteriorhodopsin and chloroplast coupling factor in asolectin vesicles. First, bacteriorhodopsin was reconstituted from a mixture of octyl glucoside, asolectin, and protein in the presence of ethylenediaminetetraacetic acid by passage through a Sephadex G-50 centrifuge column. Then, the purified coupling factor was reconstituted from a mixture of sodium cholate, bacteriorhodopsin vesicles, and coupling factor in the presence of Mg2+ by passage through the centrifuge column. Sucrose density-gradient centrifugation indicated a band of vesicles with slightly different positions in the gradient for maximum vesicle concentration, bacteriorhodopsin vesicle concentration, ATP synthesis, and ATP hydrolysis. The rate of light-driven ATP synthesis reaches a limiting value as the concentration of bacteriorhodopsin and the light intensity are increased. A steady-state rate of ATP synthesis of 1 mumol per mg of coupling factor X min-1 has been achieved. Apparently this rate is limited by the heterogeneity within the vesicle population and by the ability of bacteriorhodopsin to form a sufficiently large pH gradient.[Abstract] [Full Text] [Related] [New Search]