These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Evaluate the value of (18)F-FDG PET-CT imaging in predicting the mutationsin epidermal growth factor receptor in lung adenocarcinoma].
    Author: Ding CY, Yang WP, Guo Z, Sun J, Li YY, Li TR.
    Journal: Zhonghua Zhong Liu Za Zhi; 2017 Jul 23; 39(7):528-531. PubMed ID: 28728300.
    Abstract:
    Objective: To investigate the value of maximum Standardized Uptake Value(SUVmax), Metabolic Tumor Volume (MTV) and Total Lesion Glycolysis (TLG) calculated from (18)F-FDG PET-CT in predicting the presence of epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma. Methods: We retrospectively reviewed 137 lung adenocarcinoma patients with EGFR mutations testing and pretreatment (18)F-FDG PET-CT. Receiver Operating Characteristic (ROC) curve analysis was performed to quantify the predictive value of SUVmax、MTV、TLG. A multivariate logistic regression analysis was used to evaluate the predictive value of EGFR mutation. Results: Among 137 lung adenocarcinoma patients, 86(62.8%, 86/137) were identified with EGFR mutations. The SUVmax, MTV and TLG were 7.4, 5.28 cm(3,) 20.20, respectively. The optimal cut-off values of SUVmax, MTV and TLG were 7.99(AUC=0.658, 95% CI=0.566~0.752, P=0.002), 6.09 cm(3)(AUC=0.644, 95% CI=0.550~0.737, P=0.005), 35.08(AUC=0.650, 95% CI= 0.557~0.744, P=0.003), respectively. Multivariate analysis showed that TLG and smoking status were the most significant predictors of EGFR mutation(all P<0.05). Conclusion: TLG in (18)F-FDG PET/CT is an independent factor for predicting EGFR mutation in patients with lung adenocarcinoma, and has certain reference value for predicting EGFR mutation. 目的: 探讨(18)F-脱氧葡萄糖((18)F-FDG)正电子发射计算机断层扫描(PET-CT)显像中最大标准摄取值(SUVmax)、代谢体积(MTV)和病灶糖酵解总量(TLG)在预测肺腺癌人表皮生长因子受体(EGFR)突变中的价值。 方法: 回顾性分析137例经手术病理证实的肺腺癌患者的(18)F-FDG PET-CT显像资料和临床病理资料。采用受试者工作特征(ROC)曲线和ROC曲线下面积(AUC)分析SUVmax、MTV、TLG预测EGFR突变的最佳临界值。采用Logistic回归模型进行影响EGFR突变的多因素分析。 结果: 137例肺腺癌患者中,EGFR突变型86例(62.8%)。137例肺腺癌患者的SUVmax、MTV和TLG分别为7.42、5.28 cm(3)和20.20。ROC曲线分析显示,SUVmax、MTV和TLG预测EGFR突变的最佳临界值分别为7.99(AUC=0.658, 95% CI为0.566~0.752,P=0.002)、6.09 cm(3)(AUC=0.644, 95% CI=0.550~0.737,P=0.005)和35.08(AUC=0.650,95% CI为0.557~0.744,P=0.003)。Logistic多因素分析显示,吸烟和TLG为预测EGFR突变的独立因素(均P<0.05)。 结论: (18)F-FDG PET-CT显像中TLG是预测肺腺癌EGFR突变的独立影响因素,在预测EGFR突变中具有一定的参考价值。.
    [Abstract] [Full Text] [Related] [New Search]