These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and properties of acyl coenzyme A thioesterase II from Rhodopseudomonas sphaeroides.
    Author: Seay T, Lueking DR.
    Journal: Biochemistry; 1986 May 06; 25(9):2480-5. PubMed ID: 2872920.
    Abstract:
    A high molecular weight acyl coenzyme A (acyl-CoA) thioesterase, designated thioesterase II, has been purified 5300-fold from photoheterotrophically grown cells of Rhodopseudomonas sphaeroides. In contrast to R. sphaeroides acyl-CoA thioesterase I [Boyce, S.G., & Lueking, D.R. (1984) Biochemistry 23, 141-147], thioesterase II has a native molecular mass (Mr) of 120,000, is capable of hydrolyzing saturated and unsaturated acyl-CoA substrates with acyl chain lengths ranging from C4 to C18, and is completely insensitive to the serine esterase inhibitor diisopropyl fluorophosphate. Palmitoyl-CoA and stearoyl-CoA are the preferred (lowest Km) saturated acyl-CoA substrates and vaccenoyl-CoA is the preferred unsaturated substrate. However, comparable Vmax values were obtained with a variety of acyl-CoA substrates. Unlike a similar thioesterase present in cells of Escherichia coli [Bonner, W.M., & Bloch, K. (1972) J. Biol. Chem. 247, 3123-3133], R. sphaeroides thioesterase II displays a high ratio of decanoyl-CoA to palmitoyl-CoA activities and exhibits little ability to hydrolyze 3-hydroxyacyl-CoA substrates. Only 3-hydroxydodecanoyl-CoA supported a measurable rate of enzyme activity. With the purification of thioesterase II, the enzymes responsible for greater than 90% of the acyl-CoA thioesterase activity present in cell-free extracts of R. sphaeroides have now been identified.
    [Abstract] [Full Text] [Related] [New Search]