These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A promiscuous split intein with expanded protein engineering applications.
    Author: Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW.
    Journal: Proc Natl Acad Sci U S A; 2017 Aug 08; 114(32):8538-8543. PubMed ID: 28739907.
    Abstract:
    The protein trans-splicing (PTS) activity of naturally split inteins has found widespread use in chemical biology and biotechnology. However, currently used naturally split inteins suffer from an "extein dependence," whereby residues surrounding the splice junction strongly affect splicing efficiency, limiting the general applicability of many PTS-based methods. To address this, we describe a mechanism-guided protein engineering approach that imbues ultrafast DnaE split inteins with minimal extein dependence. The resulting "promiscuous" inteins are shown to be superior reagents for protein cyclization and protein semisynthesis, with the latter illustrated through the modification of native cellular chromatin. The promiscuous inteins reported here thus improve the applicability of existing PTS methods and should enable future efforts to engineer promiscuity into other naturally split inteins.
    [Abstract] [Full Text] [Related] [New Search]