These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Perturbing NR2B-PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling.
    Author: Xu F, Zhao X, Liu L, Song J, Zhu Y, Chu S, Shao X, Li X, Ma Z, Gu X.
    Journal: Neuroreport; 2017 Sep 06; 28(13):856-863. PubMed ID: 28746067.
    Abstract:
    Neuropathic pain is characterized by central sensitization. The interaction between N-methyl-D-aspartate receptors (NMDARs) and postsynaptic density protein-95 (PSD-95) plays a major role in central sensitization. Here, we aimed to investigate the analgesic effect of disruption of the interaction between NMDAR and PSD-95. Chronic dorsal root ganglia compression model rats were used to mimic sciatica. Thermal hyperalgesia and mechanical allodynia were evaluated. The expression of spinal phospho-NR2B, PSD-95, calcium/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element binding protein (CREB) was measured using western blotting. A mimetic peptide Myr-NR2B9c was injected intrathecally to disrupt the interaction between PSD-95 and NR2B and detected by coimmunoprecipitation. Chronic dorsal root ganglia compression surgery induced thermal hyperalgesia and mechanical allodynia, and upregulated pain-related proteins such as phospho-NR2B, PSD-95, CaMKII, and CREB expressions in the spinal cord. Myr-NR2B9c disrupted the interaction between NR2B-containing NMDARs and PSD-95 in the spinal cord. Intrathecal administration of Myr-NR2B9c attenuated neuropathic pain behaviors and downregulated the expressions of phospho-NR2B, PSD-95, CaMKII, and CREB in the spinal cord. The present study indicates that dissociation of NR2B-containing NMDARs from PSD-95 inactivates CaMKII and CREB signaling and relieves pain.
    [Abstract] [Full Text] [Related] [New Search]