These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A highly stable acetylcholinesterase biosensor based on chitosan-TiO2-graphene nanocomposites for detection of organophosphate pesticides.
    Author: Cui HF, Wu WW, Li MM, Song X, Lv Y, Zhang TT.
    Journal: Biosens Bioelectron; 2018 Jan 15; 99():223-229. PubMed ID: 28763783.
    Abstract:
    A highly stable electrochemical acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs) was developed simply by adsorption of AChE on chitosan (CS), TiO2 sol-gel, and reduced graphene oxide (rGO) based multi-layered immobilization matrix (denoted as CS@TiO2-CS/rGO). The biosensor fabrication conditions were optimized, and the fabrication process was probed and confirmed by scanning electron microscopy and electrochemical techniques. The matrix has a mesoporous nanostructure. Incorporation of CS and electrodeposition of a CS layer into/on the TiO2 sol-gel makes the gel become mechanically strong. The catalytic activity of the AChE immobilized CS@TiO2-CS/rGO/glassy carbon electrode to acetylthiocholine is significantly higher than those missing any one of the component in the matrix. The detection linear range of the biosensor to dichlorvos, a model OP compound, is from 0.036μM (7.9 ppb) to 22.6μM, with a limit of detection of 29nM (6.4 ppb) and a total detection time of about 25min. The biosensor is very reproducibly and stable both in detection and in storage, and can accurately detect the dichlorvos levels in cabbage juice samples, providing an efficient platform for immobilization of AChE, and a promisingly applicable OPs biosensor with high reliability, simplicity, and rapidness.
    [Abstract] [Full Text] [Related] [New Search]