These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films.
    Author: Li J, Du Y, Jia R, Xu J, Shen SZ.
    Journal: Materials (Basel); 2017 Jul 11; 10(7):. PubMed ID: 28773141.
    Abstract:
    Flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polypyrrole/paper (PEDOT:PSS/PPy/paper) thermoelectric (TE) nanocomposite films were prepared by a two-step method: first, PPy/paper nanocomposite films were prepared by an in situ chemical polymerization process, and second, PEDOT:PSS/PPy/paper TE composite films were fabricated by coating the as-prepared PPy/paper nanocomposite films using a dimethyl sulfoxide-doped PEDOT:PSS solution. Both the electrical conductivity and the Seebeck coefficient of the PEDOT:PSS/PPy/paper TE nanocomposite films were greatly enhanced from 0.06 S/cm to ~0.365 S/cm, and from 5.44 μV/K to ~16.0 μV/K at ~300 K, respectively, when compared to the PPy/paper TE nanocomposite films. The thermal conductivity of the PEDOT:PSS/PPy/paper composite film (0.1522 Wm-1K-1 at ~300 K) was, however, only slightly higher than that of the PPy/paper composite film (0.1142 Wm-1K-1 at ~300 K). As a result, the ZT value of the PEDOT:PSS/PPy/paper composite film (~1.85 × 10-5 at ~300 K) was significantly enhanced when compared to that of the PPy/paper composite film (~4.73 × 10-7 at ~300 K). The as-prepared nanocomposite films have great potential for application in flexible TE devices.
    [Abstract] [Full Text] [Related] [New Search]