These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzyme behaviour and molecular environment. The effects of ionic strength, detergents, linear polyanions and phospholipids on the pH profile of soluble cytochrome oxidase. Author: Maurel P, Douzou P, Waldmann J, Yonetani T. Journal: Biochim Biophys Acta; 1978 Aug 07; 525(2):314-24. PubMed ID: 28774. Abstract: The activity vs. pH profile for the oxidation of ferrocytochrome c by purified cytochrome oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) was investigated as a function of ionic strength (from 10 to 200 mM) in the absence and in the presence of various perturbants: Tween 20, linear polyanions (RNA, heparin, polyglutamic acid) and phospholipids (asolectin, phosphatidylcholine, phosphatidic acid and cardiolipin). The activation induced by Tween 20 and "zero net charge" phospholipid liposomes was not pH dependent. On the other hand, linear polyanions and polyanionic liposomes strongly perturbed the pH profile, mostly at low ionic strength, by shifting the pH optimum about 1.7 pH units towards alkaline pH values. This effect was reversed by increasing ionic strength. These observations are interpreted in the light of polyelectrolyte theory. Since these results show striking with membrane-bound enzyme, it is concluded that in vivo cytochrome oxidase is located within polyanionic sites of the micochondrial membrane. The activation broght about by phospholipids may result from two posible processes: creation of a hydrophobic environment by the non-polar tails, preventing autoaggregation; and creation of a suitable polyelectrolytic environment by the polar heads (of non zero net charge), increasing the intrinsic reaction rate.[Abstract] [Full Text] [Related] [New Search]