These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prospective Clinical Integration of an Amplicon-Based Next-Generation Sequencing Method to Select Advanced Non-Small-Cell Lung Cancer Patients for Genotype-Tailored Treatments.
    Author: Zugazagoitia J, Rueda D, Carrizo N, Enguita AB, Gómez-Sánchez D, Díaz-Serrano A, Jiménez E, Mérida A, Calero R, Lujan R, De Miguel E, Gámez P, Díaz-Hellín V, Nuñez JA, Iglesias L, Ferrer I, Paz-Ares L, Ponce-Aix S.
    Journal: Clin Lung Cancer; 2018 Jan; 19(1):65-73.e7. PubMed ID: 28780976.
    Abstract:
    INTRODUCTION: A substantial fraction of non-small-cell lung cancers (NSCLCs) harbor targetable genetic alterations. In this study, we analyzed the feasibility and clinical utility of integrating a next-generation sequencing (NGS) panel into our routine lung cancer molecular subtyping algorithm. PATIENTS AND METHODS: After routine pathologic and molecular subtyping, we implemented an amplicon-based gene panel for DNA analysis covering mutational hot spots in 22 cancer genes in consecutive advanced-stage NSCLCs. RESULTS: We analyzed 109 tumors using NGS between December 2014 and January 2016. Fifty-six patients (51%) were treatment-naive and 82 (75%) had lung adenocarcinomas. In 89 cases (82%), we used samples derived from lung cancer diagnostic procedures. We obtained successful sequencing results in 95 cases (87%). As part of our routine lung cancer molecular subtyping protocol, single-gene testing for EGFR, ALK, and ROS1 was attempted in nonsquamous and 3 squamous-cell cancers (n = 92). Sixty-nine of 92 samples (75%) had sufficient tissue to complete ALK and ROS1 immunohistochemistry (IHC) and NGS. With the integration of the gene panel, 40 NSCLCs (37%) in the entire cohort and 30 NSCLCs (40%) fully tested for ALK and ROS1 IHC and NGS had actionable mutations. KRAS (24%) and EGFR (10%) were the most frequently mutated actionable genes. Ten patients (9%) received matched targeted therapies, 6 (5%) in clinical trials. CONCLUSION: The combination of IHC tests for ALK and ROS1 and amplicon-based NGS is applicable in routine clinical practice, enabling patient selection for genotype-tailored treatments.
    [Abstract] [Full Text] [Related] [New Search]