These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization of the Ultrasound-Assisted Extraction of Phenolic Compounds from Brosimum alicastrum Leaves and the Evaluation of Their Radical-Scavenging Activity. Author: Gullian Klanian M, Terrats Preciat M. Journal: Molecules; 2017 Aug 07; 22(8):. PubMed ID: 28783112. Abstract: In order to maximize the yield of the total phenolic content (TPC) and total monomeric anthocyanin (TMA) from Brosimum alicastrum leaf and to study the radical-scavenging activity, a three-level three-factor Box-Behnken design (BBD) was used to determine the optimal points for ultrasound-assisted extraction (UAE). In this study, we analyzed the extraction time (10, 20, and 30 min), temperature (28, 30, and 32 °C), and probe sonication power (40%, 28 W/cm²; 60%, 51 W/cm²; and 80%, 74 W/cm²). Analysis of variance (ANOVA) indicated that the sonication power plays a significant role in the extraction of phenolic compounds. An increase in time and temperature resulted in a decrease in the yield, in particular, of the TMA group. DPPH was found to be a better indicator of radical-scavenging activity than ABTS. The predicted TPC and TMA optimum levels (45.18 mg GAE/g and 15.16 mg CyE/100 g) were obtained at 28 °C, 80%, and 20-10 min. DPPH obtained a maximum value (67.27 μmol TE/g) under same optimization conditions. The RSM confirmed that TPC and TMA enhanced the antioxidant activity when subjected to low temperature (28 °C), extraction time less than 20 min, and higher sonication power (74 W/cm²), and hence achieving the better DPPH scavenging activity.[Abstract] [Full Text] [Related] [New Search]