These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Contribution of vascular endothelial growth factor receptor-2 sialylation to the process of angiogenesis. Author: Chiodelli P, Rezzola S, Urbinati C, Federici Signori F, Monti E, Ronca R, Presta M, Rusnati M. Journal: Oncogene; 2017 Nov 23; 36(47):6531-6541. PubMed ID: 28783175. Abstract: Vascular endothelial growth factor receptor-2 (VEGFR2) is the main pro-angiogenic receptor expressed by endothelial cells (ECs). Using surface plasmon resonance, immunoprecipitation, enzymatic digestion, immunofluorescence and cross-linking experiments with specific sugar-binding lectins, we demonstrated that VEGFR2 bears both α,1-fucose and α(2,6)-linked sialic acid (NeuAc). However, only the latter is required for VEGF binding to VEGFR2 and consequent VEGF-dependent VEGFR2 activation and motogenic response in ECs. Notably, downregulation of β-galactoside α(2,6)-sialyltransferase expression by short hairpin RNA transduction inhibits VEGFR2 α(2,6) sialylation that is paralleled by an increase of β-galactoside α(2,3)-sialyltransferase expression. This results in an ex-novo α(2,3)-NeuAc sialylation of the receptor that functionally replaces the lacking α(2,6)-NeuAc, thus allowing VEGF/VEGFR2 interaction. In keeping with the role of VEGFR2 sialylation in angiogenesis, the α(2,6)-NeuAc-binding lectin Sambucus nigra (SNA) prevents VEGF-dependent VEGFR2 autophosphorylation and EC motility, proliferation and motogenesis. In addition, SNA exerts a VEGF-antagonist activity in tridimensional angiogenesis models in vitro and in the chick-embryo chorioallantoic membrane neovascularization assay and mouse matrigel plug assay in vivo. In conclusion, VEGFR2-associated NeuAc plays an important role in modulating VEGF/VEGFR2 interaction, EC pro-angiogenic activation and neovessel formation. VEGFR2 sialylation may represent a target for the treatment of angiogenesis-dependent diseases.[Abstract] [Full Text] [Related] [New Search]