These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanical Analysis of Extra-Articular Knee Ligaments. Part One: Native knee ligaments.
    Author: Smeets K, Slane J, Scheys L, Claes S, Bellemans J.
    Journal: Knee; 2017 Oct; 24(5):949-956. PubMed ID: 28784565.
    Abstract:
    BACKGROUND: The aim of this study was to provide a characterization of the tensile properties of the medial collateral ligament (MCL), lateral collateral ligament (LCL), anterolateral ligament (ALL) and medial patellofemoral ligament (MPFL). Our hypothesis was that extra-articular knee ligaments are heterogeneous in nature and possess distinct material properties. METHODS: MCL (n=12), LCL (n=11), MPFL (n=12) and ALL (n=19) samples from fresh frozen human cadaveric knees were subjected to uniaxial tensile testing to failure and analyzed for their material properties. The elastic modulus (slope of the linear portion of the stress/strain curve), ultimate stress (stress at failure), ultimate strain (strain at failure) and strain energy density (area under the stress/strain curve) were calculated. RESULTS: The MCL had the highest elastic modulus (441.8±117.2MPa) and was significantly greater than the MPFL (294.6±190.4MPa) and LCL (289.0±159.7MPa) (P<0.05) as well as the ALL (173.7±91.8MPa) (P<0.001). The ultimate stress was significantly higher (P<0.05) for the LCL (83.6±38.1MPa) and MCL (72.4±20.7MPa), relative to the MPFL (49.1±31.0MPa) and ALL (46.4±20.1MPa). The ultimate strain of the LCL (41.0±9.9%) and ALL (37.8±7.9%) were significantly higher (P<0.05) compared to the MCL (22.9±2.5%) and MPFL (22.2±5.6%). The strain energy density of the LCL (15.2±6.4MPa) was significantly greater (P<0.05) than all other ligaments (ALL 7.8±3.1MPa, MCL 7.5±2.9MPa and MPFL 5.0±2.9MPa). CONCLUSIONS: Extra-articular knee ligaments are a heterogeneous group with respect to material characteristics. Each ligament has tensile properties that are significantly different from others and treatment strategies should take these findings into account.
    [Abstract] [Full Text] [Related] [New Search]