These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Water deficit stress fluctuates expression profiles of 4Cl, C3H, COMT, CVOMT and EOMT genes involved in the biosynthetic pathway of volatile phenylpropanoids alongside accumulation of methylchavicol and methyleugenol in different Iranian cultivars of basil. Author: Khakdan F, Nasiri J, Ranjbar M, Alizadeh H. Journal: J Plant Physiol; 2017 Nov; 218():74-83. PubMed ID: 28787649. Abstract: Here, for the first time, the accumulation ratio of methylchavicol and methyleugenoland compounds together with the expression profiles of five critical genes (i.e., 4Cl, C3H, COMT, CVOMT and EOMT) in three Iranian cultivars of basil were assessed under water deficit stress at flowering stage. The highest value of methylchavicol was detected for Cul. 3 under severe stress (S3; 7.695μg/mg) alongside Cul. 2 under similar circumstances (S3; 4.133μg/mg), while regarding Cul. 1, no detectable amounts were acquired. Considering methyleugenol, Cul. 3 (0.396μg/mg; S0) followed by Cul. 1 (S3; 0.160μg/mg) were the capable plant samples in producing some detectable amounts of methyleugenol. Apart from some expectations, all the genes under study exhibited also different transcription ratios under deficit stress. Our results, overall, demonstrated that the regulation of the above-mentioned genes and production of methychavicol and methyleugenol seems to be a cultivar- and drought stress-dependent mechanism.[Abstract] [Full Text] [Related] [New Search]