These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution to Alzheimer's disease risk of rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 controls.
    Author: Bellenguez C, Charbonnier C, Grenier-Boley B, Quenez O, Le Guennec K, Nicolas G, Chauhan G, Wallon D, Rousseau S, Richard AC, Boland A, Bourque G, Munter HM, Olaso R, Meyer V, Rollin-Sillaire A, Pasquier F, Letenneur L, Redon R, Dartigues JF, Tzourio C, Frebourg T, Lathrop M, Deleuze JF, Hannequin D, Genin E, Amouyel P, Debette S, Lambert JC, Campion D, CNR MAJ collaborators.
    Journal: Neurobiol Aging; 2017 Nov; 59():220.e1-220.e9. PubMed ID: 28789839.
    Abstract:
    We performed whole-exome and whole-genome sequencing in 927 late-onset Alzheimer disease (LOAD) cases, 852 early-onset AD (EOAD) cases, and 1273 controls from France. We assessed the evidence for gene-based association of rare variants with AD in 6 genes for which an association with such variants was previously claimed. When aggregating protein-truncating and missense-predicted damaging variants, we found exome-wide significant association between EOAD risk and rare variants in SORL1, TREM2, and ABCA7. No exome-wide significant signal was obtained in the LOAD sample, and significance of the order of 10-6 was observed in the whole AD group for TREM2. Our study confirms previous gene-level results for TREM2, SORL1, and ABCA7 and provides a clearer insight into the classes of rare variants involved. Despite different effect sizes and varying cumulative minor allele frequencies, the rare protein-truncating and missense-predicted damaging variants in TREM2, SORL1, and ABCA7 contribute similarly to the heritability of EOAD and explain between 1.1% and 1.5% of EOAD heritability each, compared with 9.12% for APOE ε4.
    [Abstract] [Full Text] [Related] [New Search]