These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: P16 INK4a Deletion Ameliorated Renal Tubulointerstitial Injury in a Stress-induced Premature Senescence Model of Bmi-1 Deficiency. Author: Jin J, Tao J, Gu X, Yu Z, Wang R, Zuo G, Li Q, Lv X, Miao D. Journal: Sci Rep; 2017 Aug 08; 7(1):7502. PubMed ID: 28790310. Abstract: To determine whether p16 INK4a deletion ameliorated renal tubulointerstitial injury by inhibiting a senescence-associated secretory phenotype (SASP) in Bmi-1-deficient (Bmi-1 -/-) mice, renal phenotypes were compared among 5-week-old Bmi-1 and p16 INK4a double-knockout, and Bmi-1 -/- and wild-type mice. Fifth-passage renal interstitial fibroblasts (RIFs) from the three groups were analyzed for senescence and proliferation. The effect of Bmi-1 deficiency on epithelial-to-mesenchymal transition (EMT) was examined in Bmi-1-knockdown human renal proximal tubular epithelial (HK2) cells, which were treated with concentrated conditioned medium (CM) from the fifth-passage renal interstitial fibroblasts (RIFs) of above three group mice or with exogenous TGF-β1. Our results demonstrated that p16 INK4a deletion largely rescued renal aging phenotypes caused by Bmi-1 deficiency, including impaired renal structure and function, decreased proliferation, increased apoptosis, senescence and SASP, DNA damage, NF-κB and TGF-β1/Smad signal activation, inflammatory cell infiltration, and tubulointerstitial fibrosis and tubular atrophy. P16 INK4a deletion also promoted proliferation, reduced senescence and SASP of RIFs and subsequently inhibited EMT of Bmi-1-knockdown HK2 cells. TGF-β1 further induced the EMT of Bmi-1-knockdown HK2 cells. Thus, p16 INK4a positive senescent cells would be a therapeutic target for preventing renal tubulointerstitial injury.[Abstract] [Full Text] [Related] [New Search]