These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of aging on basement membrane of the soleus muscle during recovery following disuse atrophy in rats.
    Author: Kanazawa Y, Ikegami K, Sujino M, Koinuma S, Nagano M, Oi Y, Onishi T, Sugiyo S, Takeda I, Kaji H, Shigeyoshi Y.
    Journal: Exp Gerontol; 2017 Nov; 98():153-161. PubMed ID: 28803135.
    Abstract:
    Aging is known to lead to the impaired recovery of muscle after disuse as well as the increased susceptibility of the muscle to damage. Here, we show that, in the older rats, reloading after disuse atrophy, causes the damage of the muscle fibers and the basement membrane (BM) that structurally support the muscle fibers. Male Wistar rats of 3-(young) and 20-(older) months of age were subjected to hindlimb-unloading for 2weeks followed by reloading for a week. In the older rats, the soleus muscles showed necrosis and central nuclei fiber indicating the regeneration of muscle fibers. Furthermore, ectopic immunoreactivity of collagen IV, a major component of the BM, remained mostly associated with the necrotic appearance, suggesting that the older rats were impaired with the ability of repairing the damaged BM. Further, after unloading and reloading, the older rats did not show a significant alteration, although the young rats showed clear response of Col4a1 and Col4a2 genes, both coding for collagen IV. In addition, during the recovery phase, the young rats showed increase in the amount of Hsp47 and Sparc mRNA, which are protein folding-related factor genes, while the older rats did not show any significant variation. Taken together, our findings suggest that the atrophic muscle fibers of the older rats induced by unloading were vulnerable to the weight loading, and that attenuated reactivity of the BM-synthesizing fibroblast to gravity contributes to the fragility of muscle fibers in the older animals.
    [Abstract] [Full Text] [Related] [New Search]